Atomic-scale decoration for improving the pitting corrosion resistance of austenitic stainless steels
نویسندگان
چکیده
Stainless steels are susceptible to the localized pitting corrosion that leads to a huge loss to our society. Studies in the past decades confirmed that the pitting events generally originate from the local dissolution in MnS inclusions which are more or less ubiquitous in stainless steels. Although a recent study indicated that endogenous MnCr2O4 nano-octahedra within the MnS medium give rise to local nano-galvanic cells which are responsible for the preferential dissolution of MnS, effective solutions of restraining the cells from viewpoint of electrochemistry are being tantalizingly searched. Here we report such a galvanic corrosion can be greatly resisted via bathing the steels in Cu(2+)-containing solutions. This chemical bath generates Cu(2-δ)S layers on the surfaces of MnS inclusions, invalidating the nano-galvanic cells. Our study provides a low-cost approach via an atomic scale decoration to improve the pitting corrosion resistance of stainless steels in a volume-treated manner.
منابع مشابه
The Inhibition Effect of Polyethylenimine (PEI) on Pitting Corrosion of 304 Austenitic Stainless Steel in 3.5% NaCl Solution
One of the problems in the case of stainless steels is their low corrosion resistance against pitting corrosion in chloride containing environments, thereby leading to severe damage to industries. In this research, the pitting corrosion of 304 austenitic stainless steel was studied in 3.5% NaCl solution at room temperature (25˚C) by performing electrochemical measurements (containing cyclic pol...
متن کاملCytotoxicity study of plasma-sprayed hydroxyapatite coating on high nitrogen austenitic stainless steels.
Stainless steel has been frequently used for temporary implants but its use as permanent implants is restricted due to its low pitting corrosion resistance. Nitrogen additions to these steels improve both mechanical properties and corrosion resistance, particularly the pitting and crevice corrosion resistance. Many reports concerning allergic reactions caused by nickel led to the development of...
متن کاملA Corrosion Study of Grain-Refined 304L Stainless Steels Produced by the Martensitic Process
AISI 304L austenitic stainless steel with different grain sizes of 0.5 -12 μm was obtained through the martensitic process. Corrosion behavior of different samples was investigated in a 0.5M HCl solution using open circuit potential, potentiodynamic polarization and electrochemical impedance spectroscopy tests. Also, the correlation between the grain size and pitting corrosion resistance was as...
متن کاملStudy of the Corrosion Resistance of Type 304L and 316 Austenitic Stainless Steels in Acid Chloride Solution
The corrosion resistance of type 304L and 316 austenitic stainless steels in 2M H2SO4 at 0-1.5%NaCl concentrations was studied through potentiodynamic polarization technique and optical microscopy analysis. The corrosion rate, pitting potential, passivation potential and surface morphology of both steel where significantly altered by the Clion concentration, alloy composition and metallurgical ...
متن کاملHow to make N2 listen to you in steel making!
All steels contain some amount of dissolved gases such as oxygen, hydrogen and nitrogen of which nitrogen is effective in improving the mechanical and corrosion properties of stainless steels if it remains in solid solution or precipitates as very fine and coherent nitrides or carbo-nitrides with iron or alloying elements. When nitrogen is added to austenitic steels it can simultaneously improv...
متن کامل